Abstract

A coupling model of peridynamics and finite element method is proposed to study the interfacial delamination influenced by vertical crack density in thermal barrier coating (TBC) systems. Specifically, the progressive failure progress under static and fatigue loads in TBCs, including vertical cracks propagation, the evolution of vertical cracks to interfacial cracks, and interfacial delamination, is simulated by the proposed model. The difference between static failure mechanism and fatigue failure mechanism of TBCs is numerically elucidated. The simulated fracture morphology is in good agreement with the experiential observation. In both static and fatigue loads, a higher vertical crack density is found to correspond to a shorter delamination length, and there is no interfacial delamination when the vertical crack density is high enough. The results provide important insight of vertical crack density on interfacial delamination, and the durability of TBCs can be enhanced by ensuring an appropriately high vertical crack density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call