Abstract
The mechanical properties of engineered cementitious composites (ECC) are time-dependent due to the cement hydration process. The mechanical behavior of ECC is not only related to the matrix material properties, but also to the fiber/matrix interface properties. In this study, the modeling of fiber and fiber/matrix interactions is accomplished by using a semi-discrete model in the framework of peridynamics (PD), and the time-varying laws of cement matrix and fiber/matrix interface bonding properties with curing age are also considered. The strain-softening behavior of the cement matrix is represented by introducing a correction factor to modify the pairwise force function in PD theory. The fracture damage of ECC plate from 3 to 28 days was numerically simulated by using the improved PD model to visualize the process of damage fracture under dynamic loading. The shorter the hydration time, the lower the corresponding elastic modulus, and the smaller the number of cracks generated. The dynamic fracture process of early-age ECC is analyzed to understand the crack development pattern, which provides reference for guiding structural design and engineering practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.