Abstract
Pore defects are prevalent in rail welding joints and significantly contribute to the propagation of fatigue cracks. This study develops a peridynamic (PD) model that incorporates the characteristics of pore defects to analyze their impact on rolling contact fatigue behavior. Initially, compact tension (CT) fatigue tests were performed to derive and validate the bond fatigue failure model specific to rail weld materials. Subsequently, pore defects were modeled as holes in the CT specimens, with experimental results being compared to PD simulation outcomes for validation. Finally, a wheel-rail contact PD model was constructed to investigate the mechanisms of fatigue crack propagation in rail welding joints affected by pore defects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.