Abstract

Subcortical small vessel disease (SVD) is characterized by white matter damage resulting from arteriolosclerosis and chronic hypoperfusion. Transforming growth factor beta 1 (TGFB1) is dysregulated in the hereditary SVD, CARASIL (cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy). However, very little is known about the role of the largest group in the TGFB superfamily – the bone morphogenetic proteins (BMPs) – in SVD pathogenesis. The aim of this study was to characterize signaling abnormalities of BMPs in sporadic SVD. We examined immunostaining of TGFB1 and BMPs (BMP2/BMP4/BMP6/BMP7/BMP9) in a total of 19 post‐mortem human brain samples as follows: 7 SVD patients (4 males, 76–90 years old); 6 Alzheimer's disease (AD) patients (2 males, 67–93 years old) and 6 age‐matched disease controls (3 males, 68–78 years old). We subsequently investigated the effects of oxygen–glucose deprivation and BMP4 addition on cultured cells. Furthermore, adult mice were subjected to chronic cerebral hypoperfusion using bilateral common carotid artery stenosis, followed by continuous intracerebroventricular infusion of the BMP antagonist, noggin. In the SVD cases, BMP4 was highly expressed in white matter pericytes. Oxygen–glucose deprivation induced BMP4 expression in cultured pericytes in vitro. Recombinant BMP4 increased the number of cultured endothelial cells and pericytes and converted oligodendrocyte precursor cells into astrocytes. Chronic cerebral hypoperfusion in vivo also upregulated BMP4 with concomitant white matter astrogliogenesis and reduced oligodendrocyte lineage cells, both of which were suppressed by intracerebroventricular noggin infusion. Our findings suggest ischemic white matter damage evolves in parallel with BMP4 upregulation in pericytes. BMP4 promotes angiogenesis, but induces astrogliogenesis at the expense of oligodendrocyte precursor cell proliferation and maturation, thereby aggravating white matter damage. This may explain white matter vulnerability to chronic hypoperfusion. The regulation of BMP4 signaling is a potential therapeutic strategy for treating SVD.

Highlights

  • Vascular cognitive impairment develops as a consequence of various types of cerebrovascular alterations

  • We previously reported that myelin loss evolved in parallel with shrunken oligodendrocytes in small vessel disease (SVD) compared with Alzheimer’s disease (AD) [20]

  • Another study revealed that spongiosis, arteriolosclerosis, etat crible and myelin loss were more severe in the SVD cases than the AD cases [13], suggesting different etiologies underlie the white matter attenuation between SVD and AD

Read more

Summary

Introduction

Vascular cognitive impairment develops as a consequence of various types of cerebrovascular alterations. Subcortical white matter changes caused by small vessel alterations are frequently observed in vascular cognitive impairment and are referred to as subcortical ‘small vessel disease (SVD)’ [39]. Disturbances in cerebrospinal fluid production [40], cerebral edema [22], breakdown of the blood–brain barrier and increased permeability [21, 54], oxidative stress [4], and inflammation have been cited as important causes in the development of white matter changes [19]. Recent studies have noted that attenuations of vasculature and white matter are frequently observed in other neurodegenerative disorders, especially in Alzheimer’s disease (AD) [46, 59].

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.