Abstract

Peribiliary glands are minute structures that are distributed along the intrahepatic large bile ducts, extrahepatic bile duct, and cystic duct. These glands regulate many physiological functions, such as enzyme secretion. Pancreatic exocrine tissues and enzymes are often observed in peribiliary glands; thus, peribiliary glands are involved in enzyme secretion. As such, these glands can be affected by conditions such as IgG4-related sclerosing cholangitis based on commonalities with their pancreatic counterparts. Cystic changes in peribiliary glands can occur de novo, as part of a congenital syndrome, or secondary to insults such as alcoholic cirrhosis. Biliary tree stem/progenitor cells have recently been identified in peribiliary glands. These cells are involved in turnover and regeneration of biliary epithelia as well as in sclerosing reactions in some pathological conditions, such as primary sclerosing cholangitis and hepatolithiasis. Notably, hepatolithiasis is involved in mucin secretion by the peribiliary glands. Additionally, these cells are associated with the manifestation of several neoplasms, including intraductal papillary neoplasm, cystic micropapillary neoplasm, and cholangiocarcinoma. Normal peribiliary glands themselves are particularly small structures that cannot be recognized using any available imaging modalities; however, these glands are closely associated with several diseases, as mentioned above, which have typical imaging features. Therefore, knowledge of the basic pathophysiology of peribiliary glands is helpful for understanding biliary diseases associated with the peribiliary glands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.