Abstract

To define the nature of structural bone changes in patients with rheumatoid arthritis (RA) compared with those in healthy individuals by using the novel technique of high-resolution microfocal computed tomography (micro-CT). Fifty-eight RA patients and 30 healthy individuals underwent a micro-CT scan of the proximal wrist and metacarpophalangeal joints. Bone lesions such as cortical breaks, osteophytes, and surface changes were quantified on 2-dimensional (2-D) slices as well as by using 3-D reconstruction images, and exact localization of lesions was recorded. Micro-CT scans could detect bone lesions <0.5 mm in width or depth. Small erosions could be observed in healthy individuals and RA patients, whereas lesions >1.9 mm in diameter were highly specific for RA. Cortical breaks were mostly found along the radial sites of the metacarpal heads. No significant difference in the presence of osteophytes between healthy individuals and RA patients was found. Cortical surface changes, presumably cortical thinning and fenestration, became evident from 3-D reconstructions and were more pronounced in RA patients. Micro-CT allows exact detection of morphologic changes of juxtaarticular bone in healthy individuals and RA patients. Even healthy individuals occasionally show bone changes, but the severity of these lesions, with the exception of osteophytes, is greater in RA patients. Thus, micro-CT allows accurate differentiation among physiologic bone changes in joints and among types of pathologic bone damage resulting from RA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.