Abstract

The efferent projections from the periaqueductal gray matter (PAG) to the parabrachial nucleus (PB) were studied in the rat following microinjections of the anterograde axonal tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) into restricted regions of the PAG. The dorsomedial and dorsolateral PAG columns project almost exclusively to the superior lateral PB subnucleus, whereas the lateral and ventrolateral PAG columns project to five lateral PB sites: dorsal lateral subnucleus, medial and lateral crescent areas (which flank the dorsal lateral PB subnucleus), central lateral subnucleus (rostral portion), and superior lateral subnucleus. The PAG region lying near the cerebral aqueduct projects to five lateral PB sites: external lateral subnucleus (inner subdivision), medial and lateral crescent areas, central lateral subnucleus (rostral portion), and dorsal lateral subnucleus. The internal lateral PB subnucleus, which projects exclusively to the intralaminar thalamic nuclei, and the Kölliker-Fuse nucleus were not innervated by the PAG. The PAG selectively innervates individual PB subnuclei that may be part of the spino-parachio-forebrain pathway. All PAG columns, including the aqueductal region, project to the superior lateral PB subnucleus, a presumed nociceptive relay site that receives inputs from multiple spinal cord regions (laminae I, V, and VIII) and projects to the ventromedial and retrochiasmatic hypothalamic areas-two regions that have been implicated in complex goal-directed behavior (e.g., food intake and reproductive function). Earlier studies demonstrated that the dorsal lateral and external lateral PB subnuclei (inner division) receive overlapping inputs from the superficial dorsal horn (laminae I and II) and the nucleus tractus solitarius, and both PB subnuclei send projections to limbic forebrain areas (e.g., hypothalamus, preoptic region, amygdala). Because the PAG projects to both of these PB subnuclei, this projection system possibly functions as a behavioral state-dependent filter system that modulates ascending nociceptive and/or visceral information as it is relayed through the PB to forebrain sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call