Abstract

For perfusion-based functional magnetic resonance imaging, the previously introduced flow-sensitive alternating inversion recovery (FAIR) technique is combined with single-shot RARE (rapid acquisition with relaxation enhancement) and GRASE (gradient and spin echo) imaging sequences. The advantages of these sequences compared to commonly used echo-planar imaging (EPI) are an increased signal-to-noise ratio and the absence of distortions and artifacts due to magnetic field inhomogeneities. RARE- and GRASE-FAIR are applied to functional brain mapping studies in humans during visual stimulation. Results demonstrate that the presented techniques allow for perfusion maps with higher spatial resolution compared to EPI-FAIR. Relative regional cerebral blood flow change in the occipital cortex during visual stimulation was measured to be 41+/-4% (n = 5). The comparison of FAIR data obtained with RARE and GRASE techniques shows that RARE yields images with the higher signal-to-noise ratio. However, the GRASE technique features a shorter acquisition time and less RF power deposition and is thus better suited for multi-slice acquisitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call