Abstract

To assess the survival predictability of perfusion magnetic resonance imaging (MRI) by the normalized cerebral blood volume (nCBV) prior to particle beam radiotherapy (PBRT) in high-grade glioma (HGG) patients underwent particle therapy. The study retrieved dynamic susceptibility contrast MRI acquired prior to PBRT between 6/2015 and 3/2019 in 45 patients with HGG. Maximum nCBV (nCBVmax) within or adjacent to surgical/tumor bed was measured using 'hot-spot' method. The predictive values of nCBVmax for progression-free survival (PFS) and overall survival (OS) were assessed in univariate Kaplan-Meier curve and multivariate Cox proportional hazards (CPH) models. Nomograms based on CPH results were constructed to individualize the predicted probability of OS and PFS. The Kaplan-Meier curves and all CPH models based on nCBVmax as continuous variable (nCBVmax-C), group by cut-off derived from median value and Youden-index method showed that nCBVmax prior to radiotherapy was a strong predictor for both PFS and OS in HGG patients who underwent PBRT. Nomograms built on CPH models showed similar excellent performance in both discrimination and calibration. Perfusion imaging prior to PBRT is a strong predictor of survival in HGG. Novel perfusion MR-based nomogram with prospective validation could potentially be formally used in future clinical practice to individualize survival probability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call