Abstract

Decellularization of native organs may provide an acellular tissue platform for organ regeneration. However, decellularization involves a trade-off between removal of immunogenic cellular elements and preservation of biomechanical integrity. We sought to develop a bioartificial scaffold for respiratory tissue engineering by decellularization of porcine lungs and trachea while preserving organ architecture and vasculature. Lung-trachea preparations from 25 German Landrace pigs were perfused in a modified Langendorff circuit and decellularized by an SDC (sodium deoxycholate)-based perfusion protocol. Decellularization was evaluated by histology and fluorescence microscopy, and residual DNA quantified spectrophotometrically and compared with controls. Airway compliance was evaluated by endotracheal intubation and mechanical ventilation to simulate physiological breathing-induced stretch. Structural integrity was evaluated by bronchoscopy and biomechanical stress/strain analysis by measuring passive tensile strength, all compared with controls. Decellularized lungs and trachea lacked intracellular components but retained specific collagen fibers and elastin. Quantitative DNA analysis demonstrated a significant reduction of DNA compared with controls (32.8 ± 12.4 μg DNA/mg tissue vs. 179.7 ± 35.8 μg DNA/mg tissue, P < 0.05). Lungs and trachea decellularized by our perfusion protocol demonstrated increased airway compliance but preserved biomechanical integrity as compared with native tissue. Whole porcine lungs-tracheae can be successfully decellularized to create an acellular scaffold that preserves extracellular matrix and retains structral integrity and three-dimensional architecture to provide a bioartifical platform for respiratory tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call