Abstract

Background/Aims: Unlike other organs, which only have one set of capillary network, the renal microvasculature consists of two sets of capillary network series connected by efferent arterioles. Angiotensin II constricts the efferent glomerular artery. Hence, renal tumor blood flow (BF) distribution may be different from tumors in other organs. This study aims to investigate the effects of angiotensin II on the hemodynamics of intrarenal VX2 tumors using perfusion computed tomography(CT). Methods: Twenty-four male New Zealand white rabbits were randomly divided into three groups: groups A (blank controls), group B (negative controls), and group C (angiotensin II-treated animals). Group B and C were established to the model of intrarenal VX2 tumors. Furthermore, perfusion CT of the kidney was performed in each group. Prior to perfusion CT scan in group C, the mean arterial blood was elevated to 150-160 mmHg by angiotensin II. The BF, blood volume (BV), mean transit time (MTT), capillary permeability-surface area product (PS), and relative permeability-surface area product (RPS) of tumors and renal tissues were calculated. Results: Compared with normal renal cortex tissues in group A, the BF, BV and PS values of tumors in group B were significantly lower, MTT was prolonged and RPS increased. Compared with group B, only the RPS of these tumors increased from 83.23 ± 29.17% to 120.94 ± 31.84% by angiotensin II infusion. Angiotensin II significantly increased the RPS value of the renal cortex distant from the tumor (CDT) and the right renal cortex (RRC). Conclusions: Perfusion CT can accurately observe the influence of angiotensin II on normal and tumor BF in kidneys. This clarifies the effect of angiotensin II on intrarenal tumor hemodynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.