Abstract

The biochemical isolation of pure and active proteins or chlorophyll protein complexes has been crucial for elucidating the mechanism of photosynthetic energy conversion. Most of the proteins involved in this process are embedded in the photosynthetic membrane. The isolation of such hydrophobic integral membrane proteins is not trivial, and involves the use of detergents often combined with various time-consuming isolation procedures. We have applied the new procedure of perfusion chromatography for the rapid isolation of photosynthetic membrane proteins. Perfusion chromatography combines a highly reactive surface per bed volume with extremely high elution flow rates. We present an overview of this chromatographic method and show the rapid isolation of reaction centres from plant Photosystems I and II and photosynthetic purple bacteria, as well as the fractionation of the chlorophyll a/b-binding proteins of Photosystem I (LHC I). The isolation times have been drastically reduced compared to earlier approaches. The pronounced reduction in time for separation of photosynthetic complexes is convenient and permits purification of proteins in a more native state, including the maintainance of ligands and the possibility to isolate proteins trapped in intermediate metabolic or structural states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.