Abstract
In this study, the potential of perfusion calorimetry in the characterization of solvates forming isomorphic desolvates was investigated. Perfusion calorimetry was used to expose different hydrates forming isomorphic desolvates (emodepside hydrates II–IV, erythromycin A dihydrate and spirapril hydrochloride monohydrate) to stepwise increasing relative vapour pressures (RVP) of water and methanol, respectively, while measuring thermal activity. Furthermore, the suitability of perfusion calorimetry to distinguish the transformation of a desolvate into an isomorphic solvate from the adsorption of solvent molecules to crystal surfaces as well as from solvate formation that is accompanied by structural rearrangement was investigated. Changes in the samples were confirmed using FT-Raman and FT-IR spectroscopy. Perfusion calorimetry indicates the transformation of a desolvate into an isomorphic solvate by a substantial exothermic, peak-shaped heat flow curve at low RVP which reflects the rapid incorporation of solvent molecules by the desolvate to fill the structural voids in the lattice. In contrast, adsorption of solvent molecules to crystal surfaces is associated with distinctly smaller heat changes whereas solvate formation accompanied by structural changes is characterized by an elongated heat flow. Hence, perfusion calorimetry is a valuable tool in the characterization of solvates forming isomorphic desolvates which represents a new field of application for the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.