Abstract

In the present work, an arteriovenous malformation was taken as a pathological model for studying task-related flow decreases during a motor task. Combined Blood Oxygen Level Dependent (BOLD)-perfusion experiments were applied in order to evaluate the relative sensitivity of these techniques to task-related reductions in cerebral blood flow (CBF). Results shows that, by matching the sensitivity of the methods (which exhibit a different contrast-to-noise ratio) in the primary motor cortex, the spatial extent of the regions of decreased perfusion signal is larger than those of the BOLD signal reduction. The above finding suggests that perfusion imaging, that already represents a gold standard method in the detection of vascular phenomena, may estimate task-related flow decreases in a functional time-series better than BOLD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.