Abstract
Synopsis Vapour phase concentrations of aroma chemicals above a model shampoo system containing sodium dodecyl sulphate (SDS) have been measured using headspace gc methodology. It was shown that, to a first approximation, headspace concentrations were directly related to the phase volumes ratio (water/SDS), and that this could be rationalized in terms of simple partitioning. The headspace behaviour of the same materials dissolved in water and in diethyl phthalate was also investigated with a view to understanding the effect of the medium on the perfume 'profile'. The octanol/water partition coefficient was identified as a potentially useful parameter in this connection. Since the phase structures of the surfactant systems were not known, the results for all the materials were expressed in terms of 'apparent activity coefficients', calculated from headspace concentrations and mole fractions. It was found that, to a first approximation, the headspace concentration of benzyl acetate above these surfactant systems was directly proportional to the phase volumes ratio (water/SDS), and that this could be rationalized in terms of a simple partition model. It was clear, however, that a more sophisticated model would require data on the surfactant/perfume component interaction in the absence of water-such data could be more conveniently obtained using liquid analogues of SDS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.