Abstract

To respond to the urgent need for COVID-19 testing, countries perform nucleic acid amplification tests (NAAT) for the detection of SARS-CoV-2 in centralized laboratories. Real-time RT—PCR (Reverse transcription—Polymerase Chain Reaction), used to amplify and detect the viral RNA., is considered, as the current gold standard for diagnostics. It is an efficient process, but the complex engineering required for automated RNA extraction and temperature cycling makes it incompatible for use in point of care settings [1]. In the present work, by harnessing progress made in the past two decades in isothermal amplification and paper microfluidics, we created a portable test, in which SARS-CoV-2 RNA is extracted, amplified isothermally by RT—LAMP (Loop-mediated Isothermal Amplification), and detected using intercalating dyes or fluorescent probes. Depending on the viral load in the tested samples, the detection takes between twenty minutes and one hour. Using a set of 16 pools of naso-pharyngal swab eluates, we estimated a limit of detection comparable to real-time RT-PCR (i.e. 1 genome copies per microliter of clinical sample) and no cross‐reaction with eight major respiratory viruses currently circulating in Europe. We designed and fabricated an easy-to-use portable device called “COVIDISC” to carry out the test at the point of care. The low cost of the materials along with the absence of complex equipment will expedite the widespread dissemination of this device. What is proposed here is a new efficient tool to help managing the pandemics.

Highlights

  • Nucleic Acid Amplification Tests (NAATs) detect the presence of pathogen genomes in infected samples through specific amplification of theirnucleic acids

  • We conclude that the limit of detection of the method is around 1 copy per microliter of initial sample

  • Such an analytical sensitivity is comparable to real-time RT-PCR performances

Read more

Summary

Introduction

Nucleic Acid Amplification Tests (NAATs) detect the presence of pathogen genomes in infected samples through specific amplification of theirnucleic acids,. They are characterized by a low limit of detection (LoD),allowing detection of viral loads as low as 1–100 genome copies per microliter of sample, and an excellent analytical specificity.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call