Abstract
The purpose of this study was to obtain the performance of an EAHE (earth air heat exchanger) with weather conditions in the Medan city. The research method carried out was experimental in the field for several days with varying weather conditions. The air conditioning system using an Air-Earth Heat exchanger has tested its performance by comparing the experimental results with the model of equations that have been developed by the previous researchers. The incoming air velocity 2 m/s is obtained by the output temperature on average for the results experiment with 27.1 o C and for theoretical results of 26.5 o C with an average air temperature of 32.1 o C. As for the incoming air velocity 3 m/s, the resulting output temperature averages for the experimental results of 27.3 o C and for theoretical results of 26.9 o C with an average air temperature that is 33.8 o C. The higher the air intake velocity, the higher the output temperature in the Air-Earth heat exchanger. At 2 m/s air velocity, the output temperature is 27.1 o C and then rises to 27.3 o C at air velocity enter 3 m/s. The effectiveness of the earth heat exchanger at the incoming air velocity 2 m/s for the experimental results was 0.84 while the theoretical calculation was 0.97. From the results of multiple regression analysis, it is found that the NTU and inlet air temperature values have a very strong relationship to the COP value. The correlation coefficient is 0.916 at a speed of 2 m/s and 0.959 at a speed of 3 m/s. The results show great potential for the development of ground-air heat exchangers as a passive cooling system building solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.