Abstract

In this work, we assess the performance and energy efficiency of high-performance codes for the convolution operator, based on the direct, explicit/implicit lowering and Winograd algorithms used for deep learning (DL) inference on a series of ARM-based processor architectures. Specifically, we evaluate the NVIDIA Denver2 and Carmel processors, as well as the ARM Cortex-A57 and Cortex-A78AE CPUs as part of a recent set of NVIDIA Jetson platforms. The performance–energy evaluation is carried out using the ResNet-50 v1.5 convolutional neural network (CNN) on varying configurations of convolution algorithms, number of threads/cores, and operating frequencies on the tested processor cores. The results demonstrate that the best throughput is obtained on all platforms with the Winograd convolution operator running on all the cores at their highest frequency. However, if the goal is to reduce the energy footprint, there is no rule of thumb for the optimal configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.