Abstract

There are no widely accepted metrics to determine the optimal number and geographic distribution of trauma centers (TCs). We propose a Performance-based Assessment of Trauma System (PBATS) model to optimize the number and distribution of TCs in a region using key performance metrics. The proposed PBATS approach relies on well-established mathematical programming approach to minimize the number of level I (LI) and level II (LII) TCs required in a region, constrained by prespecified system-related under-triage (srUT) and over-triage (srOT) rates and TC volume. To illustrate PBATS, we collected 6002 matched (linked) records from the 2012 Ohio Trauma and EMS registries. The PBATS-suggested network was compared to the 2012 Ohio network and also to the configuration proposed by the Needs-Based Assessment of Trauma System (NBATS) tool. For this data, PBATS suggested 14 LI/II TCs with a slightly different geographic distribution compared to the 2012 network with 21 LI and LII TC, for the same srUT≈.2 and srOT≈.52. To achieve UT ≤ .05, PBATS suggested 23 LI/II TCs with a significantly different distribution. The NBATS suggested fewer TCs (12 LI/II) than the Ohio 2012 network. The PBATS approach can generate a geographically optimized network of TCs to achieve prespecified performance characteristics such as srUT rate, srOT rate, and TC volume. Such a solution may provide a useful data-driven standard, which can be used to drive incremental system changes and guide policy decisions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call