Abstract

This paper provides a deep insight into the performance of genetic algorithms with reserve selection (GARS), and investigates how parameters can be regulated to solve optimization problems more efficiently. First of all, we briefly present GARS, an improved genetic algorithm with a reserve selection mechanism which helps to avoid premature convergence. The comparable results to state-of-the-art techniques such as fitness scaling and sharing demonstrate both the effectiveness and the robustness of GARS in global optimization. Next, two strategies named static RS and dynamic RS are proposed for tuning the parameter reserve size to optimize the performance of GARS. Empirical studies conducted in several cases indicate that the optimal reserve size is problem dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.