Abstract

This paper describes a breast cancer classification performance trade-off analysis using two computational intelligence paradigms. The first, an evolutionary programming (EP)/adaptive boosting (AB) based hybrid, intelligently combines the outputs from an iteratively called weak learning algorithm (one which performs at least slightly better than random guessing) in order to boost the performance of an EP-derived weak learner. The second paradigm is support vector machines (SVMs). SVMs are new and radically different types of classifiers and learning machines that use a hypothesis space of linear functions in a high dimensional feature space. The most important advantage of a SVM, unlike neural networks, is that SVM training always finds a global minimum. Furthermore, the SVM has inherent ability to solve pattern classification without incorporating any problem-domain knowledge. In this study, the both the EP/AB hybrid and SVM were employed as pattern classifiers, operating on mammography data used for breast cancer detection. The main focus of the study was to construct and seek the best EP/AB hybrid and SVM configurations for optimum specificity and positive predictive value at very high sensitivities. Using a mammogram database of 500 biopsy-proven samples, the best performing SVM, on average, was able to achieve (under statistical 5-fold cross-validation) a specificity of 45.0% and a positive predictive value (PPV) of 50.1% at 100% sensitivity. At 97% sensitivity, a specificity of 55.8% and a PPV of 55.2% were obtained. The best performing EP/AB hybrid obtained slightly lower, but comparable, results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.