7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3390/ijgi8080348
Copy DOIPublication Date: Aug 1, 2019 | |
Citations: 28 | License type: CC BY 4.0 |
We are now generating exponentially more data from more sources than a few years ago. Big data, an already familiar term, has been generally defined as a massive volume of structured, semi-structured, and/or unstructured data, which may not be effectively managed and processed using traditional databases and software techniques. It could be problematic to visualize easily and quickly a large amount of data via an Internet platform. From this perspective, the main aim of the paper is to test point data visualization possibilities of selected JavaScript Mapping Libraries to measure their performance and ability to cope with a big amount of data. Nine datasets containing 10,000 to 3,000,000 points were generated from the Nature Conservation Database. Five libraries for marker clustering and two libraries for heatmap visualization were analyzed. Loading time and the ability to visualize large data sets were compared for each dataset and each library. The best-evaluated library was a Mapbox GL JS (Graphics Library JavaScript) with the highest overall performance. Some of the tested libraries were not able to handle the desired amount of data. In general, an amount of less than 100,000 points was indicated as the threshold for implementation without a noticeable slowdown in performance. Their usage can be a limiting factor for point data visualization in such a dynamic environment as we live nowadays.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.