Abstract
Pavement vibration monitoring under vehicle loads can be used to acquire traffic information and assess the health of pavement structures, which contributes to smart road construction. However, the effectiveness of monitoring is closely related to sensor performance. In order to select the suitable acceleration sensor for pavement vibration monitoring, a printed circuit board (PCB) with three MEMS (micro-electromechanical) accelerometer chips (VS1002, MS9001, and ADXL355) is developed in this paper, and the circuit design and software development of the PCB are completed. The experimental design and comparative testing of the sensing performance of the three MEMS accelerometer chips, in terms of sensitivity, linearity, noise, resolution, frequency response, and temperature drift, were conducted. The results show that the dynamic and static calibration methods of the sensitivity test had similar results. The influence of gravitational acceleration should be considered when selecting the range of the accelerometer to avoid the phenomenon of over-range. The VS1002 has the highest sensitivity and resolution under 3.3 V standard voltage supply, as well as the best overall performance. The ADXL355 is virtually temperature-independent in the temperature range from -20 °C to 60 °C, while the voltage reference values output by the VS1002 and MS9001 vary linearly with temperature. This research contributes to the development of acceleration sensors with high precision and long life for pavement vibration monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.