Abstract
In Korea, all nuclear power plants (NPPs) participate in annual performance tests including in vivo measurements using the FastScan, a stand type whole body counter (WBC), manufactured by Canberra. In 2018, all Korean NPPs satisfied the testing criterion, the root mean square error (RMSE) ≤ 0.25, for the whole body configuration, but three NPPs which participated in an additional lung configuration test in the fission and activation product category did not meet the criterion. Due to the low resolution of the FastScan NaI(Tl) detectors, the conventional peak analysis (PA) method of the FastScan did not show sufficient performance to meet the criterion in the presence of interfering radioisotopes (RIs), 134Cs and 137Cs. In this study, we developed an artificial neural network (ANN) to improve the performance of the FastScan in the lung configuration. All of the RMSE values derived by the ANN satisfied the criterion, even though the photopeaks of 134Cs and 137Cs interfered with those of the analytes or the analyte photopeaks were located in a low-energy region below 300 keV. Since the ANN performed better than the PA method, it would be expected to be a promising approach to improve the accuracy and precision of in vivo FastScan measurement for the lung configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.