Abstract
While interior permanent magnet (IPM) machines have been considered state of the art for traction motors, synchronous reluctance (SynRel) motors with advanced materials can provide a competitive alternative. IPM machines typically utilize neodymium iron boron permanent magnets, which pose an issue in terms of price, sustainability, demagnetization at higher operating temperatures, and uncontrolled generation. On the other hand, SynRel machines do not contain any magnets and are free from these issues. However, the absence of magnets as well as the presence of bridges and centerposts limit the flux-weakening capability of a SynRel machine, and limit the achievable constant power speed ratio without having to significantly oversize the machine and/or the power converter. In this paper, a new material referred to as the dual-phase magnetic material, where nonmagnetic regions can be selectively introduced within each lamination, will be evaluated for SynRel designs. The dual-phase feature of this material enables nonmagnetic bridges and posts, eliminating one of the key limitations of the SynRel designs in terms of torque density and flux weakening. This paper will present the design, analysis, and test results of an advanced proof-of-concept SynRel design utilizing dual-phase material with traction applications as the ultimate target application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.