Abstract

The present work deals with the simulation and comparison of two tunneling field effect transistors (TFETs) based on the single layers of armchair graphene nanoribbons (AGNRs) and armchair phosphorene nanoribbons (APNRs). The transmission properties of the transistor have been obtained by solving the Schrödinger-Poisson equations self-consistently using the non-equilibrium Green's function (NEGF) formalism and the real-space approach. In addition, the energy band structure of the two materials have been obtained using tight-binding approximation method. The simulation results in each bias include the energy band structure, energy-resolved current spectrum, transmission function and drain current versus gate voltage diagrams. The results indicate that the structure of phosphorene TFETs meets a better ION to IOFF ratio and sub-threshold swing than the graphene TFETs despite a relative decrease in the amount of ION.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.