Abstract

A Compton telescope with high angular resolution and high energy resolution is a promising detector for the next generation of astrophysics space missions aiming at hard X-rays and sub-MeV/MeV gamma-rays. We have been working on a semiconductor Compton camera based on silicon and cadmium telluride (Si/CdTe Compton telescope). The soft gamma-ray detector (SGD) employs a Si/CdTe Compton camera combined with a well-type active shield. It will be mounted on the NeXT mission, proposed to be launched around 2012. One Compton camera module in the SGD will consist of 24 layers of double-sided silicon strip detectors and four layers of CdTe pixel detectors. We carried out Monte Carlo simulations to investigate the basic performance of the detector. Design parameters of devices required in the simulation, such as energy resolution and position resolution of the detector, are based on the results from our prototype detector. From the simulation using current design parameters, the detection efficiency is found to be higher than 10% at ∼ 100 keV and the angular resolution to be 9° and 4.4° at 120 keV and 330 keV, respectively. The effects of changing the design parameters are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call