Abstract
The use of surrogate models for approximating computationally expensive simulations has been on the rise for the last two decades. Kriging-based surrogate models are popular for approximating deterministic computer models. In this work, the performance of Kriging is investigated when gradient information is introduced for the approximation of computationally expensive black-box simulations. This approach, known as gradient-enhanced Kriging, is applied to various benchmark functions of varying dimensionality (2D-20D). As expected, results from the benchmark problems show that additional gradient information can significantly enhance the accuracy of Kriging. Gradient-enhanced Kriging provides a better approximation even when gradient information is only partially available. Further comparison between gradient-enhanced Kriging and an alternative formulation of gradient-enhanced Kriging, called indirect gradient-enhanced Kriging, highlights various advantages of directly employing gradient information, such as improved surrogate model accuracy, better conditioning of the correlation matrix, etc. Finally, gradient-enhanced Kriging is used to model 6- and 10-variable fluid---structure interaction problems from bio-mechanics to identify the arterial wall's stiffness.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.