Abstract

The development and utilization of network big data is also accompanied by data theft and destruction, so the monitoring of network security is particularly important. Based on this, the study applies the fuzzy C-mean clustering algorithm to the network security model, however, the algorithm has major defects in discrete data processing and the influence of feature weights. Therefore, the study introduces the concept of local density and optimizes the initial clustering center to solve its sensitive defects as well as empirical limitations; at the same time, the study introduces the adaptive methods of fuzzy indicators and feature weighting, and uses the concepts such as fuzzy center-of-mass distribution to avoid problems such as the model converging too fast and not being able to handle discrete data. Finally, the study does a simulation analysis of the performance of each module, and the comparison of the overall algorithm with the rest of the models. The experimental results show that in the comparison of the overall algorithm, its false detection rate decreases by 8.57% in the IDS Dataset dataset, compared to the particle swarm algorithm. Therefore, the adaptive weighted fuzzy C-Means algorithm based on local density proposed in the study can effectively improve the network intrusion detection performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.