Abstract
In this study, foam ceramics were prepared via a direct foaming method at high temperatures (1080–1120 °C), using red mud (RM) and K-feldspar washed waste (KFW) as the raw materials and SiC as the foaming agent, respectively. The chemical compositions and crystalline phases of the raw materials as well as the structural and mechanical properties of the foam ceramics were investigated. By adjusting the formulation and sintering process parameters, the porous structure of the foam ceramics could be effectively modulated. In addition to some residual crystalline phases in the raw materials, new phases, including rutile (TiO2) and anorthite (CaAl2Si2O8), were generated in foam ceramics. The compressive strength of the foam ceramics decreased with an increase in the KFW/RM ratio and sintering temperature, which was mainly related to the low density of the foam ceramics and the poor support of the pore walls to the structure. Among all the foam ceramics investigated, the foam ceramic with the KFW/RM ratio of 1:1, SiC content of 1 wt%, sintering temperature of 1100 °C and sintering time of 60 min showed the best overall performance with a bulk density, an apparent porosity, an average pore size and a compressive strength of 0.77 g/cm3, 61.89%, 0.52 mm, and 3.64 MPa, respectively. Its excellent porous structure and mechanical properties rendered it suitable for application as insulation materials or decorative materials for building partition walls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.