Abstract
This is an experimental work performed to identify the influence of direct contact condensation inside an eductor. The fluid used in the experiments is water in two different phases: liquid and vapor, for primary and secondary flows, respectively. This study was conducted in an attempt to establish the suitability of an eductor as a combined vacuum generator and condenser for membrane desalination applications. The pressure and temperature measurements at critical points in the flow paths have been summarized to identify the influence of primary flow on secondary fluid saturation and condensation. In addition, the mechanism of phase change has been explained through the photography of fluid flow in a two-dimensional eductor. A consistent oscillation of the gas-liquid interface was observed during steady-state operations of the eductor. This work also contributes to the validation of future computational research. It will provide a baseline for computational thermal fluid analysis related to the mixing of condensing and non-condensing flow. In general, the research encompasses the practical operational scenario and provides information on the heat and mass transfer of direct contact condensation with a finite secondary source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.