Abstract

In order to optimize the charge transfer path in quantum dot sensitized solar cells (QDSCs), we employed successive ionic layer adsorption and reaction method to dope CdSe with Co for fabricating CdS/Co‐doped‐CdSe QDSCs constructed with CdS/Co‐doped‐CdSe deposited on mesoscopic TiO2 film as photoanode, Pt counter electrode, and sulfide/polysulfide electrolyte. After Co doping, the bandgap of CdSe quantum dot decreases, and the conduction band and valence band all improve, forming a cascade energy level which is more conducive to charge transport inside the solar cell and reducing the recombination of electron‐hole thus improving the photocurrent and ultimately improving the power conversion efficiency. This work has not been found in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.