Abstract
At present, as a new separation technology, supersonic separators have great potential in the separation of natural gases. However, their system performance is still low. In this paper, a supersonic swirl separator design is proposed with an integration approach of the discrete phase model (DPM), bi-coupling, and the random walk model, and it is used to predict the flow process of liquid droplets within the device. Such a numerical method is further employed to study the influence of key parameters on system performance. The results show that with an increase in the inlet port number and the ratio of the gas-liquid area, the separation performance decreases. As a result, the expansion, condensation effect, and economy of the separation system are greatly improved. When the deflection angle exceeds 20°, the separation temperature increases greatly. Consequently, this may ruin the condensing environment. The working pressure ranges are: (1) the boost ratio (the dry outlet pressure/total inlet pressure) is less than 0.76; (2) the wet pressure ratio (the wet outlet pressure/total inlet pressure)is less than 0.46. The increase in droplet diameter can improve the separation performance, and the droplets are completely separated as the diameter reaches 1.75 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.