Abstract

This paper presents a comprehensive study on the performance of a polydimethylsiloxane-based microfluidic device for the detection of continuous distributed static and dynamic loads. The core of this device is a single-compliant polymer microstructure integrated with a set of electrolyte-enabled distributed transducers, which are equally spaced along the microstructure length. The microstructure converts continuous distributed loads to continuous deflection, which is translated to discrete resistance changes by the distributed transducers. One potential application of this device is to measure spatially varying elasticity/viscoelasticity of a heterogeneous soft material, through quasi-static, stress relaxation and dynamic mechanical analysis tests. Thus, by controlling the displacement of a rigid probe, three types of loads (i.e., static, step and sinusoidal) are exerted on the device, and the performance of the device is experimentally characterized and analytically examined. As a result, this work establishes not only an experimental method for characterizing the performance of the device under various loading conditions, which can be directly adopted to measure the spatially varying elasticity/viscoelasticity of a heterogeneous soft material, but also the correlation of the device performance to its design parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.