Abstract

The chemical and electrochemical performance of a microfluidic reactor for the cogeneration of nitrobenzene derivatives and electricity has been analysed. Reactor operation has been tested using loads of 100Ω and 1000Ω, allowing an in-depth characterisation replicating the circumstances of actual chemical production. Conversion rates of up to 64% and power densities of up to 0.299mWcm−2 have been attained. The main products obtained using this cogeneration co-laminar flow cell (CLFC) are aniline and nitrosobenzene. Nitrosobenzene is identified as a product generated by cogeneration while aniline is established to be an unwanted side-product at the anode due to oxidant crossover, which reduces the cogeneration efficiency. Reactor stability has been determined by monitoring of the anode, cathode and cell potentials. Self-poisoning of the anode reaction leads to loss in electrical performance. Due to its ability to self-regenerate, the power density shows an oscillating behaviour over time. Results in this paper reveal that the concept of a cogeneration microreactor is promising, although the anode reaction and the mass transfer in the reactor can still be optimised further for actual applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.