Abstract

Abstract The temperature of a photovoltaic (PV) plate increases with increasing absorbed irradiation, leading to degradation of the electrical efficiency of the PV cells. The heat can be dissipated by air or water to prevent the deterioration of the cells. In this study, a concentrating photovoltaic thermal (PV-T) dual-fluid solar collector is proposed in which two types of concentrators are integrated. The collector’s performance was analysed with air and water as the working fluids. Analytical expressions were derived from the energy balance equations for each component of the collector. The mean temperature values of the PV plate, air inlet/outlet, water inlet/outlet, glaze and collector back wall were experimentally recorded under different fluid mass flow rates and solar irradiations. The readings were then used to compute the thermal and electrical efficiencies of the collector. The results obtained from the numerical and experimental analyses were compared and evaluated by employing the mean absolute percentage error method. The results show that incorporating two fluids increases the thermal and electrical efficiencies. The total thermal and electrical efficiencies achieved are 67.00% and 13.02%, respectively, at air and water mass flow rates of 0.0103 kg/s and 0.0164 kg/s, respectively, and a solar irradiation of 650 Wm−2. The outcomes of this research are expected to help advance the designs of dual-fluid PV-T solar collectors and offering a broader range of thermal applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.