Abstract

Abstract Aluminium-based hybrid nano-metal matrix composites are right materials, finding application in the aerospace and automotive industry. The present research focused on the effects of sliding load, sliding velocity, and temperature on wear behaviour of a novel hybrid metal matrix nano-composite .Stir-squeeze casting setup is used to produce the composites. The base metal is scrap aluminium alloy wheel (SAAW) reinforced with 1, 2, wt.% and 5.5, 7 wt.% of micro-sized alumina (Al2O3)m and nano-sized alumina (Al2O3)n particle respectively. An orthogonal array L9 (OA) has been used for designing the experiments. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is applied to find the optimal condition for Coefficient of Friction(COF),wear, surface roughness. Analysis of Variance (ANOVA) results show that the reinforcement contributes 19.40% and most influencing factor is sliding load with 62.33%. The samples tested were examined and analyzed using a Field Emission Scanning Electron Microscope (FESEM) and an energy-dispersive X-ray spectrometry (EDX). Additionally, a profilometer was used to measure the surface roughness of the worn-out specimen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.