Abstract
For lithium-sulfur (Li-S) batteries, high-concentration electrolyte that inhibits the dissolution of Li polysulfide has been widely studied; one such electrolyte contains sulfolane. This study investigates the conditions under which a microporous activated carbon cathode, derived from azurmic acid, operates stably in a sulfolane-based electrolyte. We expected this cathode to maintain a stable capacity in a sulfolane-based electrolyte because its micropores stabilize the S species. However, Li-S batteries containing this cathode and electrolyte exhibit significant capacity decay during cycling. The cutoff voltage during charge-discharge cycling is varied to suppress the capacity decay. At a discharge voltage of 1.4 V or lower, the cycle life of the Li-S batteries is significantly reduced. Conversely, increasing the cutoff voltage during discharge suppresses the capacity decay of Li-S batteries. On the other hand, increasing the upper voltage limit during charging increases the reversible capacity. Thus, the operating voltage range is optimized. This study indicates that the voltage range of Li-S batteries should be carefully determined depending on the type of cathode material and electrolyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.