Abstract

The absolute nodal coordinate formulation (ANCF) is a nonlinear finite element approach proposed for the large deformation dynamics analysis of beam- and plate/shell-type structures. In the ANCF approach, elastic forces can be defined using three-dimensional elasticity-based continuum mechanics. This approach is often straightforward, and it makes it possible to use advanced material models in the ANCF framework. However, it has been pointed out in several studies that continuum ANCF-based elements with a full three-dimensional elasticity description can suffer from locking phenomena. In this study, a comparison between various combinations of locking alleviation techniques and their applicability to different ANCF beam variants is studied using numerical examples. Furthermore, the enhanced deformation gradient (EDG) technique, which has been proposed recently in finite element literature, is demonstrated for high-order ANCF beam elements. Based on the numerical tests, none of the currently available techniques are suitable for all types of ANCF elements. The paper also shows that the efficiency and accuracy of the techniques are case-dependent. For the ANCF beam element involving higher-order terms with respect to trapezoidal mode, however, the EDG-based techniques are preferable to reduce locking phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.