Abstract

This work proposes a design and performance quantification methodology for observer-based impact detection in serial robot manipulators in presence of modelling errors and without force/torque sensor. After expressing the modelling errors between the physical robot and its inverse dynamic model as the sum of contributions due to dynamic parameters uncertainties and numerical differentiation errors for a given trajectory, an observer of the external disturbance torque is designed based on the inverse dynamic model and using a Kalman filter. The influence of each design parameter of the observer on the quality of the external torque estimation is studied first based on simulation results. Then a frequency analysis is conducted to distinguish between the influence of the exact external torque, the modelling uncertainties and the measurement noise on the estimated external torque. Finally a methodology is proposed to determine the optimal design corresponding to the shortest detection time depending on the expected sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.