Abstract

ABSTRACTThe aim of the study was the development of a multifunctional, high-performance, fully biodegradable multilayer polylactic acid (PLA) film for food packaging applications. In particular, sealable multilayer PLA–clay nanocomposite systems with different layouts in terms of composition and relative thickness of the layers, all consisting of a PLA–clay nanocomposite layer between two pure PLA layers for direct food contact, were designed and produced by blown film co-extrusion. The films obtained were analysed for their morphology, functional properties and lactic acid (LA)-specific migration in 50% ethanol. The results showed that, with respect to the unfilled multilayer system, taken as a reference, the nanocomposite films had significant improvements, up to about 40%, in their barriers to oxygen and tensile strengths, and resulted in being more easily sealable over a wide heat-sealing temperature range (80–100°C) with higher seal strength. Moreover, all films had LA migrations always well below the former generic overall migration limit of 60 mg kg–1 food (10 mg dm–2) of European Union Regulation No. 10/2011 (deleted by the amending Regulation No. 2016/1416), even if their morphology was strongly modified during the migration tests due to the strong swelling action of the used simulant (simulant D1 = 50% ethanol (aq.) (v/v)) towards PLA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call