Abstract
We present calculations of the first-order bias and first-order variance of parameters which are estimated batch-wise from the global minimum of a cost-function of complex-valued signals embedded in zero-mean Gaussian noise. The derivation involves the calculation of the multidimensional Taylor series of the non-analytic cost-function up to third order using the elegant Wirtinger calculus. Whereas closed-form expressions for the variance can be obtained straightforwardly from a second-order Taylor series, and have been presented in various other contexts, an exact expression for the bias cannot be derived, in general. In this paper, we propose approximate expressions for the first-order bias and confirm them in a comparison of results from extensive analytical calculations with results from Monte Carlo (MC) simulations for the statistical efficiency of a batch-processing blind equalizer using the constant-modulus (CM) criterion. We study the equalization of independent and identically distributed (i.i.d.) random symbols and obtain asymptotic (for large batch size) expressions for the averages of the bias and variance over zero-mean random (real-valued) signals of binary phase shift keying (BPSK), and (complex-valued) signals of M-ary PSK modulation (M >; 2) . Finally, we compare the statistical efficiency of the CM estimator with the one of the maximum likelihood (ML) blind estimation of the path parameters and equalized symbols with CM constraint.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.