Abstract
Desiccant air conditioning systems are considered as better alternatives to the conventional air conditioning system because of the independent control of temperature and humidity and being environment friendly. An artificial neural network (ANN) model has been developed to predict the performance of a rotary desiccant dehumidifier for different process air inlet conditions. Dry bulb temperature, humidity ratio and flow rate of the process as well as regeneration air streams of dehumidifier and regeneration temperatures are used as inputs to the model. The outputs of the model are outlet dry bulb temperature and humidity ratio of process as well as regeneration air streams of dehumidifier, the moisture removal rate and the effectiveness of the dehumidifier. Moisture removal rate and effectiveness of the dehumidifier are considered as the performance indicators of the system. Experiments are also conducted to investigate the performance of the desiccant wheel and the test results are used as target data to train the ANN model. Performance predictions through ANN are compared with the experimental test results and a close agreement is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.