Abstract

In electroosmotic dehumidification (EOD), a membrane composed of a desiccant material removes moisture from air to be conditioned. Then the water is pumped through pores in the membrane by the application of a voltage and rejected on the other side. This allows the sensible and latent loads in air conditioning to be handled separately and may lead to improvements in energy efficiency and comfort control. The performance of an air conditioning system using an electroosmotic dehumidification system in series with a conventional vapor compression cycle was modeled. The electroosmotic system handles the entire latent load and the vapor compression system handles the entire sensible cooling load. Performance of the system was compared to a conventional vapor compression air conditioner that handles both the latent and sensible loads with a single evaporator coil. Literature data for Nafion membranes was used in a simple electroosmotic drag model. Modeling indicates the feasibility of electroosmotic dehumidification for separating the control of latent and sensible load in air conditioning systems. The total COP of the system, neglecting fan power, can be 1–2 times higher (depending on airflow rate) than a system using an evaporator for latent and sensible load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call