Abstract
The objective of this paper is development and application of a methodology for preliminary analysis of variable pitch fan (VPF), both as a separate component and as a module integrated into a short-medium range geared turbofan engine developed within European FP7 project ENOVAL. For this purpose, a high bypass ratio two spool geared turbofan engine model was constructed in software PROOSIS. A VPF performance modeling methodology was then developed using 3D steady RANS CFD produced fan maps as baseline; the CFD maps characterized five discrete fan pitch angle settings. In order to represent those maps in PROOSIS and add the pitch angle as a degree of freedom, they were transformed into the Map Fitting Tool (MFT) reference frame. Once the complete VPF turbofan model was in place, engine mission optimization experiments were carried out. The resulting performance is characterized by a good capability to control the fan surge margin, without degrading the engine fuel consumption. This paper represents a new contribution on the topic firstly by coupling a 0D engine performance code with a 3D RANS calculation, and then by introducing the concept of MFT maps with an additional degree of freedom as the interface between the two.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.