Abstract
An optimization approach, based on computational fluid dynamics methodology, is investigated for the performance prediction and optimization of liquid rocket engine nozzle. The CFD code employs implicit Lower-Upper decomposition (LU) scheme for solving the two-dimensional axisymmetric Navier–Stokes (NS) equations and species transport equations in an efficient manner. The validity of the code is demonstrated by comparing the numerical calculations with both the experimental data and previous calculations. Then the code, called by three optimization algorithms (i.e. successive quadratic programming method, genetic algorithm and interdigitation strategy) respectively, is used to design axisymmetric optimum-thrust nozzle. Results show that improvement on nozzle thrust can be obtained over that of the baseline case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.