Abstract

Workload management in a Database Management System (DBMS) has become difficult and challenging because of workload complexity and heterogeneity. During and after execution of the workload, it is hard to control and handle the workload. Before executing the workload, predicting its performance can help us in workload management. By knowing the type of workload in advance, we can predict its performance in an adaptive way that will enable us to monitor and control the workload, which ultimately leads to performance tuning of the DBMS. This study proposes a predictive and adaptive framework named as the Autonomic Workload Performance Prediction (AWPP) framework. The proposed AWPP framework predicts and adapts the DBMS workload performance on the basis of information available in advance before executing the workload. The Case-Based Reasoning (CBR) approach is used to solve the workload management problem. The proposed CBR approach is compared with other machine learning techniques. To validate the AWPP framework, a number of benchmark workloads of the Decision Support System (DSS) and the Online Transaction Processing (OLTP) are executed on the MySQL DBMS. For preparation of training and testing data, we executed more than 1000 TPC-H and TPC-C like workloads on a standard data set. The results show that our proposed AWPP framework through CBR modeling performs better in predicting and adapting the DBMS workload. DBMSs algorithms can be optimized for this prediction and workload can be controlled and managed in a better way. In the end, the results are validated by performing post-hoc tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.