Abstract

Axial flow compressor is one of the most important parts of gas turbine units. Therefore, its design and performance prediction are very important. One-dimensional modeling is a simple, fast and accurate method for performance prediction of any type of compressors with different geometries. In this approach, inlet flow conditions and compressor geometry are known and by considering various compressor losses, velocity triangles at rotor, and stator inlets and outlets are determined, and then compressor performance characteristics are predicted. Numerous models have been developed theoretically and experimentally for estimating various types of compressor losses. In present work, performance characteristics of the axial-flow compressor are predicted based on one-dimensional modeling approach. In this work, models of Lieblein, Koch-Smith, Herrig, Johnsen-Bullock, Pollard-Gostelow, Aungier, Hunter-Cumpsty Reneau are implemented to consider compressor losses, incidence angles, deviation angles, stall and surge conditions. The model results are compared with experimental data to validate the model. This model can be used for various types of single stage axial-flow compressors with different geometries, as well as multistage axial-flow compressors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.