Abstract

Automated seizure detection methods can be used to reduce time and costs associated with analyzing large volumes of ambulatory EEG recordings. These methods however have to rely on very complex, power hungry algorithms, implemented on the system backend, in order to achieve acceptable levels of accuracy. In size, and therefore power-constrained EEG systems, an alternative approach to the problem of data reduction is online data selection, in which simpler algorithms select potential epileptiform activity for discontinuous recording but accurate analysis is still left to a medical practitioner. Such a diagnostic decision support system would still provide doctors with information relevant for diagnosis while reducing the time taken to analyze the EEG. For wearable systems with limited power budgets, data selection algorithm must be of sufficiently low complexity in order to reduce the amount of data transmitted and the overall power consumption. In this paper, we present a low-power hardware implementation of an online epileptic seizure data selection algorithm with encryption and data transmission and demonstrate the tradeoffs between its accuracy and the overall system power consumption. We demonstrate that overall power savings by data selection can be achieved by transmitting less than 40% of the data. We also show a 29% power reduction when selecting and transmitting 94% of all seizure events and only 10% of background EEG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.