Abstract

A comprehensive experimental study of a fiber optic relative humidity (RH) sensor is carried out in terms of characterization and performance optimization against various parameters that affect the sensor response and sensitivity e.g., film composition, film thickness, fiber core diameter, and the sensor geometry. The sensor is based on evanescent wave absorption spectroscopy and utilizes a specific reagent immobilized permeable polymer membrane cladding on a declad U-bend optical fiber. An optimum film thickness and an optimum film composition exist. In addition, a fiber with a smaller core diameter was observed to be more sensitive, unlike the previously reported results. The sensitivity further increases with a decrease in the bending radius. The sensor is found to be sensitive to RH ranging from ~1.6 to ~92%, exhibiting a very fast response time, an extremely good degree of reversibility, repeatability, and a large dynamic range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.